31.05.2022
TwistSLAM: Constrained SLAM in Dynamic Environment
Classical visual simultaneous localization and mapping (SLAM) algorithms usually assume the environment to be rigid. This assumption limits the applicability of those algorithms as they are unable to accurately estimate the camera poses and world structure in real life scenes containing moving objects (e.g. cars, bikes, pedestrians, etc.). To tackle this issue, we propose TwistSLAM: a semantic,…
lire la publication