Automatic recognition of Virtual Reality sickness based on physiological signals

Conference Paper - 2020

Conference

IBC

Author(s)

Nicolas Martin
Nicolas Mathieu
Nico Pallamin
Martin Ragot
Jean-Marc Diverrez

Abstract

Virtual Reality (VR) sickness seems one of the main limitations to the large-scale adoption of VR technologies. This disturbance seems to induce physiological changes that affect the sympathetic and parasympathetic activities of the users. Thereby, it seems relevant to measure users' physiological data in order to prevent and reduce VR sickness. This paper presents the results of an initial real-life experiment of VR sickness detection based on physiological data. The electrodermal, cardiac and subjective data of 27 participants was recorded during VR sessions. Machine Learning algorithms were trained and the best model (Gradient Boosting) explained 48% of the VR sickness variance. These results demonstrate the opportunity to develop an automatic and continuous tool to detect the appearance of VR sickness based on physiological signals. This tool will prove very valuable to the VR industry.